Simultaneous optimization of cryoprobe placement and thermal protocol for cryosurgery.

Abstract
We demonstrate that it is possible to simultaneously optimize multiple cryoprobe placements and their thermal protocol for one freeze-thaw cycle. A numerical optimization algorithm is used and three different forms of objective function are examined in terms of algorithm convergence rate, minimum value of the chosen objective function, temperature-volume histograms and isotherm distributions. The optimization results depend on the initial values of the variables, the form of the objective function, optimization goals and the mathematical method adopted for gradient calculation. The proposed optimization model offers significant advantages over the previously reported semi-empirical approach to conformal cryotherapy, such as the ability to handle an unlimited number of variables and eliminating the need for the user input between iterations, thereby reducing, if not removing, the subjectivity of cryosurgery treatment planning.