An iterative thresholding algorithm for linear inverse problems with a sparsity constraint

Abstract
We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary preassigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted 𝓁p‐penalties on the coefficients of such expansions, with 1 ≤ p ≤ 2, still regularizes the problem. Use of such 𝓁p‐penalized problems with p < 2 is often advocated when one expects the underlying ideal noiseless solution to have a sparse expansion with respect to the basis under consideration. To compute the corresponding regularized solutions, we analyze an iterative algorithm that amounts to a Landweber iteration with thresholding (or nonlinear shrinkage) applied at each iteration step. We prove that this algorithm converges in norm.

This publication has 32 references indexed in Scilit: