Abstract
A semiclassical description for dye lasers is proposed, where the energy-level diagram of the dye molecule is assumed to consist of a continuous bandlike ground state and an excited singlet state. Unidirectional single-frequency (s.f.) operation is discussed. The linear-stability analysis for this operation reveals a very low threshold instability, which may appear generally in practical lasers. The ratio of the instability threshold to the lasing threshold may be of any value greater than 1, depending mainly on the bandwidth and the distribution of the dipole moments on the band, but it is independent of the cavity loss. This instability may account for that observed in recent experiments by Hillman, Krasinki, Boyd, and Stroud [Phys. Rev. Lett. 52, 1605 (1984)]. A general approach to analyzing the linear stability of the s.f. operation of the Maxwell-Bloch equations is also proposed, which states that only the eigenvalues of a 2×2 matrix are relevant: one concerns the stability of the s.f. operation near the lasing threshold, the other determines the instability threshold of this operation.