Abstract
This review describes advances made toward the application of surface-enhanced Raman scattering (SERS) in sensitive analysis and diagnostics. In the early sections of this review we briefly introduce the fundamentals of SERS including a discussion of SERS at the single-molecule level. Applications relevant to trace analysis, environmental monitoring, and homeland security and defense, for example high explosives and contaminant detection, are emphasized. Because the key to wider application of SERS analysis lies in the development of highly enhancing substrates, in the second half of the review we focus our attention on the extensive progress made in designing innovative soluble, supported, and ordered SERS-active nano-architectures to harness the potential of this technique toward solving current and emerging analytical tasks. No attempt or claim is made to review the field exhaustively in its entirety nor to cover all applications, but only to describe several significant milestones and progress made in these important areas and to provide some perspective on where the field is quickly moving.