Dark matter from SU(4) model
Preprint
- 30 October 2003
Abstract
The left-right symmetric Pati-Salam model of the unification of quarks and leptons is based on SU(4) and SU(2)xSU(2) groups. These groups are naturally extended to include the classification of families of quarks and leptons. We assume that the family group (the group which unites the families) is also the SU(4) group. The properties of the 4-th generation of fermions are the same as that of the ordinary-matter fermions in first three generations except for the family charge of the SU(4)_F group: F=(1/3,1/3,1/3,-1), where F=1/3 for fermions of ordinary matter and F=-1 for the 4-th generation. The difference in F does not allow the mixing between ordinary and fourth-generation fermions. Because of the conservation of the F charge, the creation of baryons and leptons in the process of electroweak baryogenesis must be accompanied by the creation of fermions of the 4-th generation. As a result the excess n_B of baryons over antibaryons leads to the excess n_{\nu 4}=N-\bar N=n_B of neutrinos over antineutrinos in the 4-th generation. This massive fourth-generation neutrino may form the non-baryonic dark matter. In principle their mass density n_{\nu 4}m_N in the Universe can give the main contribution to the dark matter, since the lower bound on neutrino mass m_N from the data on decay of the Z-bosons is m_N > m_Z/2. The straightforward prediction of this model leads to the amount of cold dark matter relative to baryons, which is an order of magnitude bigger than allowed by observations. This inconsistency may be avoided by non-conservation of the F-charge.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: