Monte Carlo Renormalization of the 3D Ising Model: Analyticity and Convergence
- 8 April 1996
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review Letters
- Vol. 76 (15) , 2613-2616
- https://doi.org/10.1103/physrevlett.76.2613
Abstract
We review the assumptions on which the Monte Carlo renormalization technique is based, in particular, the analyticity of the block-spin transformations. On this basis, we select an optimized Kadanoff blocking rule in combination with the simulation of a Ising model with reduced corrections to scaling. This is achieved by including interactions with second and third neighbors. As a consequence of the improved transformation, this Monte Carlo renormalization method yields a fast convergence and a high accuracy. The results for the critical exponents are and .
Keywords
All Related Versions
This publication has 21 references indexed in Scilit:
- Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theoryJournal of Statistical Physics, 1993
- Monte Carlo renormalization of the three-dimensional Ising modelPhysica A: Statistical Mechanics and its Applications, 1989
- Convergence of finite size scaling analysis: Weak size dependence of renormalization transformationsPhysica A: Statistical Mechanics and its Applications, 1987
- Open problems in Monte Carlo renormalization group: Application to critical phenomena (invited)Journal of Applied Physics, 1987
- Location of Renormalization-Group Fixed PointsPhysical Review Letters, 1986
- Monte Carlo renormalization-group calculations of critical behavior in the simple-cubic Ising modelPhysical Review B, 1984
- A special-purpose processor for the Monte Carlo simulation of ising spin systemsJournal of Computational Physics, 1983
- Monte Carlo renormalization-group analysis of the classical Heisenberg model in two dimensionsPhysical Review B, 1980
- Critical behavior of the three-dimensional Ising modelPhysical Review B, 1979
- Monte Carlo Renormalization GroupPhysical Review Letters, 1979