The rare silver gum, Eucalyptus cordata, is leaving its trace in the organellar gene pool of Eucalyptus globulus
- 2 November 2004
- journal article
- research article
- Published by Wiley in Molecular Ecology
- Vol. 13 (12) , 3751-3762
- https://doi.org/10.1111/j.1365-294x.2004.02364.x
Abstract
The process of genetic assimilation of rare species by hybridizing congeners has been documented in a number of plant genera. This raises the possibility that some of the genetic diversity found in phylogeographical studies of widespread species has been acquired through hybridization with species that are now rare or extinct. In this fine‐scale phylogeographical analysis, we show that a rare eucalypt species is leaving its trace in the chloroplast genome of a more abundant congener. The heart‐leafed silver gum, Eucalyptus cordata, is a rare endemic of south‐eastern Tasmania. Its populations are scattered amidst populations of more abundant related species, including the Tasmanian blue gum, Eucalyptus globulus. Using 339 samples from across the full range of both species, we compared chloroplast (cp) DNA haplotype phylogeography in E. globulus and E. cordata. The genealogy and distribution of chloroplast haplotypes suggest that E. globulus has acquired cpDNA from E. cordata in at least four different mixed populations. Shared haplotypes are highest in E. globulus sampled within 2 km of known E. cordata populations and drop to zero at a distance of 25 km from the nearest known E. cordata population. Localized haplotype sharing occurs in the absence of obvious hybrid zones or locally shared nuclear ribosomal DNA sequences. Given that the future loss of E. cordata from some mixed populations is likely, these findings indicate that phylogeographical analyses of organellar DNA should consider the possibility of introgression, even from species that have been eliminated from the sites of interest.Keywords
This publication has 41 references indexed in Scilit:
- Nested clade analysis: an extensively validated method for strong phylogeographic inferenceMolecular Ecology, 2008
- Anthropogenic disturbance promotes hybridization between Banksia species by altering their biologyJournal of Evolutionary Biology, 2003
- Maternal inheritance of the chloroplast genome inEucalyptus globulusand interspecific hybridsGenome, 2001
- CHLOROPLAST SHARING IN THE TASMANIAN EUCALYPTSEvolution, 2001
- CHLOROPLAST EVOLUTION IN THE PINUS MONTEZUMAE COMPLEX: A COALESCENT APPROACH TO HYBRIDIZATIONEvolution, 2000
- Chloroplast DNA and nuclear DNA variation in the sympatric alder species, Alnus cordata (Lois.) Duby and A. glutinosa (L.) Gaertn.Biological Journal of the Linnean Society, 2000
- ITS Sequence Data Resolve Higher Level Relationships Among the EucalyptsMolecular Phylogenetics and Evolution, 1999
- Locating likely glacial forest refugia in Tasmania using palynological and ecological information to test alternative climatic modelsBiological Conservation, 1998
- Hybridization in the Catalina Island Mountain Mahogany (Cercocarpus traskiae): RAPD EvidenceConservation Biology, 1995
- The numerical intraspecific taxonomy of Eucalyptus globulus Labill. (Myrtaceae)Botanical Journal of the Linnean Society, 1974