Abstract
This article provides a simple method to accelerate Markov chain Monte Carlo sampling algorithms, such as the data augmentation algorithm and the Gibbs sampler, via alternating subspace-spanning resampling (ASSR). The ASSR algorithm often shares the simplicity of its parent sampler but has dramatically improved efficiency. The methodology is illustrated with Bayesian estimation for analysis of censored data from fractionated experiments. The relationships between ASSR and existing methods are also discussed.

This publication has 27 references indexed in Scilit: