Abstract
Semi-interpenetrating polymer network (semi-IPN) hydrogels composed of β-chitosan and poly(ethylene glycol) diacrylate macromer (PEGM) were synthesized and characterized for the application as potential biomedical materials. The mixture of PEGM and β-chitosan, dissolved in water including a small amount of acetic acid, was cast to prepare hydrogel films, followed by a subsequent crosslinking with 2,2-dimethoxy-2-phenylacetophenone as a non-toxic photoinitiator by ultraviolet irradiation. Photocrosslinked hydrogels exhibited relatively high equilibrium water content in the range 77–83% which is mainly attributed to the free water content rather than to the bound water, hydrogen bonded with components in semi-IPN hydrogels. The crystallinity, thermal properties and mechanical properties of semi-IPN hydrogels were studied. All the photocrosslinked hydrogels revealed a remarkable decrease in crystallinity. The glass transition temperatures, Tg, of crosslinked PEGM segment in semi-IPNs increased compared with poly(ethylene glycol) itself. However, with increasing β-chitosan content their Tg decreased owing to the higher degree of crosslinking. The tensile strengths of semi-IPNs in dry state were rather high, but those of hydrogels in wet state decreased drastically.

This publication has 1 reference indexed in Scilit: