Nonlinear Finite-Element Method for Plates and Its Application to Dynamic Response of Reactor Fuel Subassemblies

Abstract
A finite-element procedure for transient analysis of plates and shells in three-dimensional space, and applicable to large displacements and nonlinear material properties, is described. This procedure employs a convected coordinate formulation enabling the use of simple strain-nodal displacement and nodal force-stress relations. The plate/shell element considers linear in-plane displacements and cubic transverse displacements. The orientation of lumped masses is described by unit vectors so that arbitrarily large rotations can be treated. Discretized equations of motion are integrated explicitly in time with a difference formula. Membrane artificial viscosity is utilized to stabilize occasional oscillations. The computational efficiency of the procedure is quite good: one element-time step takes 2 msec on an IBM 360/195 computer. Comparison of results with experimental data of impulsively loaded plates shows good agreement. The program was applied to a hexagonal fuel subassembly loaded internally. Various results are presented on its response and it is shown that, for that type of loading, two-dimensional cross-sectional models may be adequate.