The effect of particle size, shape, distribution and their evolution on the constitutive response of nonlinearly viscous composites. II. Examples
- 15 September 1997
- journal article
- Published by The Royal Society in Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Vol. 355 (1730) , 1853-1872
- https://doi.org/10.1098/rsta.1997.0093
Abstract
Part I of this work was concerned with the development of constitutive models for nonlinearly viscous and perfectly plastic composites, which are capable of accounting for the evolution of microstructure when the composites are subjected to finite deformation. This involved the derivation of instantaneous constitutive relations for the composites depending on appropriate microstructural variables, as well as of evolution equations for these variables. As an application of the general theory, in this part of the work, use is made of the models to analyse the response of porous materials and of two–phase composites with perfectly plastic phases under axisymmetric loading conditions (with fixed axes). Attention is focused on the effect of the evolution of the distribution of the inclusions (or voids) on the overall response of the composites. It is found that for porous materials, or for more general classes of composites where the inclusions are softer than the matrix, the effect of changes in the distribution of the inclusions is not very significant relative to the effect of changes in the size and shape of the inclusions. On the other hand, for composites with inclusions that are sufficiently harder than the matrix, the deformation is concentrated in the matrix, and the effect of changes in the distribution function of the inclusions can become quite significant.Keywords
This publication has 19 references indexed in Scilit:
- Void growth and coalescence in porous plastic solidsPublished by Elsevier ,2003
- Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavitiesPublished by Elsevier ,2002
- The effect of particle size, shape, distribution and their evolution on the constitutive response of nonlinearly viscous composites. I. TheoryPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1997
- Approximate Models for Ductile Metals Containing Nonspherical Voids—Case of Axisymmetric Oblate Ellipsoidal CavitiesJournal of Engineering Materials and Technology, 1994
- Axisymmetric deformation of power-law solids containing a dilute concentration of aligned spheroidal voidsJournal of the Mechanics and Physics of Solids, 1992
- Particle reinforcement of ductile matrices against plastic flow and creepActa Metallurgica et Materialia, 1991
- Plastic flow in ductile materials containing a cubic array of rigid spheresInternational Journal of Plasticity, 1991
- On void collapse in viscous solidsMechanics of Materials, 1982
- Void Growth and Collapse in Viscous SolidsPublished by Elsevier ,1982
- Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile MediaJournal of Engineering Materials and Technology, 1977