Abstract
Two formulations of quantum mechanics, inequivalent in the presence of closed timelike curves, are studied in the context of a soluable system. It illustrates how quantum field nonlinearities lead to a breakdown of unitarity, causality, and superposition using a path integral. Deutsch's density matrix approach is causal but typically destroys coherence. For each of these formulations I demonstrate that there are yet further alternatives in prescribing the handling of information flow (inequivalent to previous analyses) that have implications for any system in which unitarity or coherence is not preserved.
All Related Versions