Abstract
Let N denote the natural numbers. If AN, we write Ā for the complement of A in N. A set AN is cohesive if (i) A is infinite and (ii) for any recursively enumerable set W either WA or ∩ A is finite. A r.e. set MN is maximal if is cohesive.A recursively presented vector space (r.p.v.s.) U over a recursive field F consists of a recursive set UN and operations of vector addition and scalar multiplication which are partial recursive and under which U becomes a vector space. A r.p.v.s. U has a dependence algorithm if there is a uniform effective procedure which applied to any n-tuple ν0, ν1, …, νn−1 of elements of U determines whether or not ν0, ν1 …, νn−1 are linearly dependent. Throughout this paper we assume that if U is a r.p.v.s. over a recursive field F then U is infinite dimensional and U = N. If WU, then we say W is recursive (r.e., etc.) iff W is a recursive (r.e., etc.) subset of N. If SU, we write (S)* for the subspace generated by S. If V1 and V2 are subspaces of U such that V1 ∩ V2 ={} (where is the zero vector of U), then we write V1V2 for (V1V2)*. If V1V2U are subspaces, we write V2/V1 for the quotient space.

This publication has 3 references indexed in Scilit: