Quantifying the Relationships among Drug Classes
- 13 March 2008
- journal article
- Published by American Chemical Society (ACS) in Journal of Chemical Information and Modeling
- Vol. 48 (4) , 755-765
- https://doi.org/10.1021/ci8000259
Abstract
The similarity of drug targets is typically measured using sequence or structural information. Here, we consider chemo-centric approaches that measure target similarity on the basis of their ligands, asking how chemoinformatics similarities differ from those derived bioinformatically, how stable the ligand networks are to changes in chemoinformatics metrics, and which network is the most reliable for prediction of pharmacology. We calculated the similarities between hundreds of drug targets and their ligands and mapped the relationship between them in a formal network. Bioinformatics networks were based on the BLAST similarity between sequences, while chemoinformatics networks were based on the ligand-set similarities calculated with either the Similarity Ensemble Approach (SEA) or a method derived from Bayesian statistics. By multiple criteria, bioinformatics and chemoinformatics networks differed substantially, and only occasionally did a high sequence similarity correspond to a high ligand-set similarity. In contrast, the chemoinformatics networks were stable to the method used to calculate the ligand-set similarities and to the chemical representation of the ligands. Also, the chemoinformatics networks were more natural and more organized, by network theory, than their bioinformatics counterparts: ligand-based networks were found to be small-world and broad-scale.Keywords
This publication has 36 references indexed in Scilit:
- Global mapping of pharmacological spaceNature Biotechnology, 2006
- Global properties of biological networksDrug Discovery Today, 2005
- Enzyme classification by ligand bindingProteins-Structure Function and Bioinformatics, 2004
- Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structuresOrganic & Biomolecular Chemistry, 2004
- Small-world view of the amino acids that play a key role in protein foldingPhysical Review E, 2002
- Statistical mechanics of complex networksReviews of Modern Physics, 2002
- Structure-activity relationship homology (SARAH): a conceptual framework for drug discovery in the genomic eraChemistry & Biology, 1999
- Empirical statistical estimates for sequence similarity searchesJournal of Molecular Biology, 1998
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- Basic local alignment search toolJournal of Molecular Biology, 1990