Human endometrial epithelial cell lines for studying steroid and cytokine actions

Abstract
Recent studies suggest that the proliferation and expression of HLA-DR molecules in endometrial epithelium may be regulated by systemic steroids and local cytokines. To test the interacting influences of cytokines and steroids on the expression of HLA-DR and proliferation of epithelial cells, an endometrial cell model is required that is sensitive to both signals. In this study, we characterize cells of carcinoma cell lines of endometrial lineage for their responsiveness to cytokines and steroids. Independently developed for its response to steroid hormones from a well-differentiated adenocarcinoma of human endometrium, EnCa101AE cell line is further cloned for the expression of progesterone receptor. Immunohistochemical localization using monoclonal antibodies demonstrates that both EnCa101AE cell line and cloned ECC1 cells are purely epithelial, as evidenced by the expression of cytokeratin and epithelial membrane antigen, express estrogen receptors, and concomitantly exhibit IFN-gamma receptor. Experiments using radioiodinated IL-1 reveal that these cell lines also possess high affinity receptors for IL-1. As indicated by the induction of HLA-DR molecules, and alterations in morphologic characteristics, these cell lines are sensitive to both IFN-gamma and IL-1 action. The class II molecules (HLA-DR, HLA-DP, and HLA-DQ) are differentially induced by IFN-gamma treatment in carcinoma cell lines, with HLA-DR being the prevailing induced molecule. IFN-gamma inhibits and estradiol-17β promotes growth of ECC1 cells in a dose-and time-dependent manner. These findings indicate that the interacting effect(s) of the cytokines and steroid hormones on endometrial epithelium may be studied in these unique steroid-and cytokine-sensitive epithelial cell lines.