Spin-polarized tunnelling, magnetoresistance and interfacial effects in ferromagnetic junctions

Abstract
The pioneering studies of spin-polarized tunnelling by Meservey and Tedrow in the early 1970s showed that the conduction electrons in ferromagnetic (FM) metals are spin polarized and that the spin is conserved in the tunnelling process. Only recently (1995) improved material fabrication techniaues have permitted realization of the Julliere quantitative model, showing that tunnelling in ferromagnet/insulator/ferromagnet (FM/I/FM) junctions should lead to a large junction magnetoresistance (JMR); JMR values greater than 30% have been achieved at room temperature. This recent success has led to several fundamental auestions regarding the phenomenon of spin tunnelling and also the development of JMR devices. In this paper, experimental results, such as the dependence on bias, temperature and barrier characteristics of FM/I/FM tunnelling are reviewed briefly. The influence of inelastic tunnelling processes, metal at the interface and material properties on the JMR is discussed. The future direction from both the physics and the applications viewpoints, is also covered.