Conformational similarities between one-chain and two-chain tissue plasminogen activator (t-PA): implications to the activation mechanism on one-chain t-PA
- 21 April 1992
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 31 (15) , 3852-3861
- https://doi.org/10.1021/bi00130a017
Abstract
Tissue plasminogen activator (t-PA) is an exceptional serine protease, because unlike most other serine protease zymogens single-chain tissue plasminogen activator (sct-PA) possesses a substantial amount of proteolytic activity. The unusual reaction of sct-PA afforded the opportunity to directly compare the active site environment of sct-PA and two-chain tissue plasminogen activator (tct-PA) in solution through the application of a series of nitroxide spin labels and fluorophores. These labels, which have been previously shown to covalently label the catalytic serine of other serine proteases, inactivated both sct-PA and tct-PA. The labels can be divided into two classes: those which form tetrahedral complexes (sulfonates) and those which form trigonal complexes (anthranilates). Those which formed tetrahedral complexes were found to be insensitive to structural differences between sct-PA and tct-PA at the active site. In contrast, those which formed trigonal complexes could differentiate and monitor the sct-PA to tct-PA conversion by fluorescence spectroscopy. Models of the structure of sct-PA and tct-PA were constructed on the basis of the known X-ray structures of other serine protease zymogen and active enzyme forms. One of the nitroxide spin labels was modeled into the sct-PA and tct-PA structures in two possible orientations, both of which could be sensitive to structural differences between sct-PA and tct-PA. These models formed the structural rationale used to explain the results obtained with the "tetrahedral" and "trigonal" probes, as well as to offer a possible explanation for the unique reactivity of sct-PA.Keywords
This publication has 0 references indexed in Scilit: