Accurate estimation of influenza epidemics using Google search data via ARGO

Abstract
Significance: Big data generated from the Internet have great potential in tracking and predicting massive social activities. In this article, we focus on tracking influenza epidemics. We propose a model that utilizes publicly available Google search data to estimate current influenza-like illness activity level. Our model outperforms all available Google-search–based real-time tracking models for influenza epidemics at the national level of the United States, including Google Flu Trends. Our model is flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for estimation and prediction at multiple temporal and spatial resolutions for other social events.
Funding Information
  • National Science Foundation (DMS-1510446)