Numerical investigation of the thermodynamic limit for ground states in models with quenched disorder
Abstract
The effect of open boundary conditions for four models with quenched disorder are studied in finite samples by numerical ground state calculations. Extrapolation to the infinite volume limit indicates that the configurations in ``windows'' of fixed size converge to a unique configuration, up to global symmetries. The scaling of this convergence is consistent with calculations based on the fractal dimension of domain walls. These results provide strong evidence for the ``two-state'' picture of the low temperature behavior of these models. Convergence in three-dimensional systems can require relatively large windows.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: