Dynamical structure of transfer RNA studied by normal mode analysis

Abstract
The internal motion of yeast phenylalanine transfer RNA is studied by normal mode analysis in extended dihedral angle space, in which the flexibility of five-membered ribose rings is treated faithfully by introducing a variable for its pseudo-rotational motion. Analysis of global molecular motions reveals that the molecule is very soft. We show that this softness comes not from the property of the “material” comprising the molecule but from its slender shape. Analysis of thermal distance fluctuations reveals that this molecule can be regarded as consisting dynamically of three blocks. Thermal fluctuations of the mainchain dihedral angles show rigidity of the anticodon region. They also show flexibility of regions around nonstacking bases. Base-stacking interactions cause suppression of the correlated functions of mainchain dihedral angles beyond a ribose ring. We analyze the thermal fluctuation of parameters describing the positions of two adjacent bases. Fluctuations of relative translational parameters in the anticodon and acceptor stem regions are found to be larger than those in other stem regions. The relative translational motions cause the two stem regions to undergo global twisting and bending motions. We show that the role of pseudo-rotational motion of sugars is important in regions around bases which are involved in nonregular interactions.

This publication has 0 references indexed in Scilit: