Laser frequency stabilization using regenerative spectral hole burning

Abstract
We demonstrate laser frequency stabilization using a continuously regenerated transient spectral hole in an inhomogeneously broadened resonance of a solid. Regenerative transient holes provide extreme stabilization for time scales appropriate for spectroscopy, signal processing, ranging, and interferometry. Stabilization to 20 Hz on a 10-ms time scale using spectral holes at 793 nm in Tm3+:Y3Al5O12 gives substantial improvement in the reliability of stimulated photon echoes in the same material and enables the observation of a third population storage mechanism for hole burning in Tm3+:Y3Al5O12.