Cooperative Activation of Cultured Vagal Afferent Neurons by Leptin and Cholecystokinin

Abstract
To test the hypothesis that leptin can directly activate vagal afferent neurons, we used fluorescence imaging to detect acute changes in cytosolic calcium after leptin application to primary cultures of vagal afferent neurons dissociated from adult rat nodose ganglia. We found that approximately 40% of vagal afferent neurons exposed to leptin (40 ng/ml) responded with rapid and reversible increases in cytosolic calcium. These responses were dependent upon extracellular calcium. As previously reported, about 35% of vagal afferents increase cytosolic calcium in response to the gut-peptide cholecystokinin (CCK). A majority (74%) of neurons that responded to CCK also exhibited increases in cytosolic calcium in response to leptin. In addition, synergistic increases in cytosolic calcium were observed when leptin and CCK were applied in combination. These results demonstrate that leptin acts directly on vagal afferent neurons to trigger acute influxes of extracellular calcium. Our results also suggest cooperation between leptin and CCK in the activation of some vagal afferent neurons. Acute activation of vagal afferents by leptin alone and in combination with CCK may contribute to modulation of visceral reflexes and control of food intake.