The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed β-strand/β-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability

Abstract
Two members of the pgip gene family ( pgip‐1 and pgip‐2 ) of Phaseolus vulgaris L. were expressed separately in Nicotiana benthamiana and the ligand specificity of their products was analysed by surface plasmon resonance (SPR). Polygalacturonase‐inhibiting protein‐1 (PGIP‐1) was unable to interact with PG from Fusarium moniliforme and interacted with PG from Aspergillus niger ; PGIP‐2 interacted with both PGs. Only eight amino acid variations distinguish the two proteins: five of them are confined within the β‐sheet/β‐turn structure and two of them are contiguous to this region. By site‐directed mutagenesis, each of the variant amino acids of PGIP‐2 was replaced with the corresponding amino acid of PGIP‐1, in a loss‐of‐function approach. The mutated PGIP‐2s were expressed individually in N.benthamiana , purified and subjected to SPR analysis. Each single mutation caused a decrease in affinity for PG from F.moniliforme ; residue Q253 made a major contribution, and its replacement with a lysine led to a dramatic reduction in the binding energy of the complex. Conversely, in a gain‐of‐function approach, amino acid K253 of PGIP‐1 was mutated into the corresponding amino acid of PGIP‐2, a glutamine. With this single mutation, PGIP‐1 acquired the ability to interact with F.moniliforme PG.