Chlorophyll Fluorescence Characteristics Associated with Hydration Level in Pea Cotyledons

Abstract
In order to study the effects of desiccation on a photosynthetic system, light harvesting and light-induced electron transport processes were examined in pea cotyledons at various moisture levels, using in vivo fluorescence excitation spectra and fluorescence induction kinetics. Water sorption isotherms yielded thermodynamic data that suggested very strong water binding between 4 to 11% water, intermediate sorption between water contents of 13 to 22%, and very weak binding at moisture contents between 24 to 32%. The fluorescence properties of the tissue changed with the moisture contents, and these changes correlated generally with the three regions of water binding. Peak fluorescence and fluorescence yield remained at low levels when water content was limited to the tightly bound regions, below 12%. Several new peaks appeared in the chlorophyll a excitation spectrum and both peak fluorescence and fluorescence yield increased at intermediate water-binding levels (12-22%). At moisture contents where water is weakly bound (>24%), peak fluorescence and fluorescence yield were maximum and the fluorescence excitation spectrum was unchanging with further increases in water content.