Deformation and Recrystallization Textures in Cross-Rolled Copper Sheet

Abstract
A study has been made of the deformation and recrystallization textures of 99.99% pure copper sheets which were cross rolled by 82 and 96% reduction in thickness and recrystallized in a salt bath at 450°C for 1h. The deformation texture was approximated by the {011}〈755〉 orientation as the major component and {001}〈100〉 as a minor component. These deformation texture components were well simulated using the rate sensitive relaxed constraints model. The {001}〈100〉 orientation was calculated to be metastable while the {011}〈755〉 orientation was located in the middle of the rotation path between the stable orientations in two cross rolling directions. The recrystallization texture in the center layer of the 96% cross-rolled copper sheet was approximated by {86 50 9}〈10 34 94〉 for each rolling direction. The evolution of the recrystallization texture was discussed based on the strain energy release maximization model.