Abstract
A novel technique for transmission electron microscopy is described and some possible applications illustrated. The technique involves the formation of a stereo-optic effect using a through-focus pair of dark-field images. While such stereo-optic pairs do not show the spatial relationships between various objects in the specimen microstructure, they do convey information about the crystallographic relationships. It is shown that this technique, called 2 1/2D imaging, is useful in the study of precipitated phases and it facilitates clear distinction between small precipitates and other microstructural features. This is a powerful method of analysis of complex microstructures in crystallographic terms. Intended as the first report of the technique, the paper broadly discusses the possible applications of 2 1/2D imaging, giving as examples some of the elementary uses in studies of precipitation, recrystallization, deformation, and recovery processes in crystalline materials.