Differential theory of fluids below the critical temperature: Study of the Lennard-Jones fluid and of a model ofC60

Abstract
The hierarchical reference theory (HRT) is applied to the Lennard-Jones fluid below the critical temperature Tc. This study completes a previous one performed above Tc using the same kind of approximate closure for the direct correlation function. Results for several thermodynamic quantities and for the two-particle correlations are reported and compared both with other theories and with simulation data. In the two-phase region the theory correctly yields rigorously flat isotherms; this feature allows a straightforward and accurate determination of the coexistence curve without resorting to the Maxwell construction. In the critical region our analysis is consistent with the previously developed one for T>Tc and displays nontrivial critical exponents. We also study a fluid with the Girifalco model potential for C60. The critical point of the liquid-vapor transition is found at Tc=2138 K and ρc=0.50 nm3. When the HRT result is supplemented with Verlet’s freezing criterion a triple point is found at Tt=1979 K and ρt=0.848 nm3.