Investigation of Failure Processes in Porous Battery Substrates: Part I—Experimental Findings

Abstract
Experimental findings are presented which demonstrate the coupled transport, mechanical and morphological changes in porous battery materials when they are cycled electrochemically. These materials, comprised of a mixture of powdered nickel and nickel fiber, act as substrates in nickel-metal hydride (NiMH) cells, and function as porous, conductive containment for positive-plate active material. They can offer substantial weight and cost savings over more traditional sintered or foam materials, provided they can be designed to produce good conductivity over many (>500) electrochemical cycles. This study represents an expansion of previous work by the authors, which had established some key differences in the behavior of substrate materials for a small number of cells. Here, these difference are validated with a greater variety and number of electrochemical/material experiments, along with a parallel study on morphological changes. In the second paper in this series (Cheng et al., 1999b), transport and mechanics models are presented to explain the observed differences, using microstructural models based on observations in this study.