Reconstruction of ancestral protein interaction networks for the bZIP transcription factors
- 18 December 2007
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 104 (51) , 20449-20453
- https://doi.org/10.1073/pnas.0706339104
Abstract
As whole-genome protein-protein interaction datasets become available for a wide range of species, evolutionary biologists have the opportunity to address some of the unanswered questions surrounding the evolution of these complex systems. Protein interaction networks from divergent organisms may be compared to investigate how gene duplication, deletion, and rewiring processes have shaped the evolution of their contemporary structures. However, current approaches for comparing observed networks from multiple species lack the phylogenetic context necessary to reconstruct the evolutionary history of a network. Here we show how probabilistic modeling can provide a platform for the quantitative analysis of multiple protein interaction networks. We apply this technique to the reconstruction of ancestral networks for the bZIP family of transcription factors and find that excellent agreement is obtained with an alternative sequence-based method for the prediction of leucine zipper interactions. Further analysis shows our probabilistic method to be significantly more robust to the presence of noise in the observed network data than a simple parsimony-based approach. In addition, the integration of evidence over multiple species means that the same method may be used to improve the quality of noisy interaction data for extant species. The ancestral states of a protein interaction network have been reconstructed here by using an explicit probabilistic model of network evolution. We anticipate that this model will form the basis of more general methods for probing the evolutionary history of biochemical networks.Keywords
This publication has 30 references indexed in Scilit:
- All duplicates are not equal: the difference between small-scale and genome duplicationGenome Biology, 2007
- An exploration of alternative visualisations of the basic helix-loop-helix protein interaction networkBMC Bioinformatics, 2007
- Evolution at the system level: the natural history of protein interaction networksTrends in Ecology & Evolution, 2007
- Functional Analysis of Gene Duplications in Saccharomyces cerevisiaeGenetics, 2007
- Græmlin: General and robust alignment of multiple large interaction networksGenome Research, 2006
- Cross-species analysis of biological networks by Bayesian alignmentProceedings of the National Academy of Sciences, 2006
- Modeling cellular machinery through biological network comparisonNature Biotechnology, 2006
- Loss of ancestral genes in the genomic evolution of Ciona intestinalisEvolution & Development, 2005
- MUSCLE: multiple sequence alignment with high accuracy and high throughputNucleic Acids Research, 2004
- The rapid generation of mutation data matrices from protein sequencesBioinformatics, 1992