Mid-IR interband cascade lasers: progress toward high performance

Abstract
Type-II interband cascade (IC) lasers take advantage of the broken-gap alignment in type-II quantum wells to reuse electrons for sequential photon emissions from serially connected active regions. Here, we review our recent progress in InAs/GaInSb type-II IC lasers at emission wavelengths of 3.6 - 4 micrometers . These semiconductor lasers have exhibited significantly higher differential quantum efficiencies and peak powers than previously reported. Low threshold current densities (e.g., approximately 56 A/cm2 at 80 K) and power efficiency exceeding 14% were observed from mesa-stripe lasers when operated in cw mode. Also, these lasers were able to operate at temperatures up to approximately 252 K in pulsed mode and approximately 142 K in cw mode. We observed slope efficiencies exceeding 1 W/A/facet, corresponding to a differential external quantum efficiency exceeding 600%, from devices at temperatures above 80 K. A peak output power of approximately 6 W/facet was observed from an IC laser at 80 K.

This publication has 0 references indexed in Scilit: