Abstract
Starting from the stochastic Liouville equation of the full Haken-Strobl model, describing the coupled coherent and incoherent motion of excitons in molecular crystals, the Nakajima-Zwanzig generalized master equation (GME) for the probability of finding an exciton at a specific lattice site is derived by an exact straightforward evaluation of its memory function. Various recently derived generalized master equations describing the excition motion are obtained as limiting cases and the Born approximation is discussed. It is shown that, even in the case of nearest-neighbor interaction in the stochastic Liouville equation, in the GME generalized time-dependent transition rates evolve between non-nearest neighbors and that their time behavior shows damped oscillations. Applying the Born approximation to the GME, the range of the generalized transition rates reduces to that of the interaction in the stochastic Liouville equation. Furthermore in this approximation the transition rates show a purely exponential decay with increasing time. Taking into account the interaction with an arbitrary number of neighbors, the mean square displacement of the exciton motion is calculated exactly from the GME. Finally the GME is solved exactly in the general case and several limiting expressions are discussed.