Abstract
Vajious formulations of surface evaporation are tested against in situ data collected over a plot of loamy bare ground. Numerical simulations lasting seven days are compared with observations of near-surface water content and cumulative evaporation. A comparison of classical bulk aerodynamic formulations shows similar predictions of daytime evaporation while significant differences are exhibited during the night. The so-called “surface moisture availability method” seems to overestimate the nocturnal evaporation flux. In the context of this dataset, threshold methods strongly underestimate surface evaporation during the whole period of observations. A sensitivity analysis reveals that threshold evaporation (maximum sustainable water flux) is highly sensitive upon the depth of the top soil layer. Abstract Vajious formulations of surface evaporation are tested against in situ data collected over a plot of loamy bare ground. Numerical simulations lasting seven days are compared with observations of near-surface water content and cumulative evaporation. A comparison of classical bulk aerodynamic formulations shows similar predictions of daytime evaporation while significant differences are exhibited during the night. The so-called “surface moisture availability method” seems to overestimate the nocturnal evaporation flux. In the context of this dataset, threshold methods strongly underestimate surface evaporation during the whole period of observations. A sensitivity analysis reveals that threshold evaporation (maximum sustainable water flux) is highly sensitive upon the depth of the top soil layer.

This publication has 0 references indexed in Scilit: