Asymptotic spin-spin correlations of theU→∞ one-dimensional Hubbard model

Abstract
The large-distance behavior of the spin-spin correlation function of the one-dimensional repulsive Hubbard model is evaluated analytically in the strong-coupling regime at quarter filling. In this case, its power-law decay is characterized by an exponent γ=3/2. We have found that this behavior is generally valid at any nonzero doping, although our argument is not mathematically rigorous away from quarter filling. These results strongly suggest that the renormalization-group scaling to the Tomonaga-Luttinger model is exact in the U→∞ Hubbard model.