Quantitative imaging of a radiotherapeutic drug, Na2B12H11SH, at subcellular resolution in tissue cultures using ion microscopy.

  • 1 October 1992
    • journal article
    • Vol. 52  (19) , 5219-22
Abstract
The effectiveness of boron neutron capture therapy is predicted to be dependent not only on the amount of boron taken up by the target cells but also on the intracellular distribution of boron. Using the isotopic imaging technique ion microscopy, we have quantitatively determined uptake and intracellular distribution of Na2B12H11SH, a promising boron drug for boron neutron capture therapy, in four human cell lines: U87 glioblastoma cells, HeLa epithelioid carcinoma cells, GM 2408b mutant skin fibroblasts, and GM 3348b skin fibroblasts. The boron uptake of all four cell lines, after exposure to 100-500 micrograms/ml Na2B12H11SH, increased as the dosages were increased but showed a tendency toward saturation. Boron was more concentrated in the cytoplasm than in the nucleus but was not strongly localized within cells. There were no significant differences in boron uptake among the four cell lines. A retention experiment identified at least two different intracellular boron pools, and cells lost greater than 60% of intracellular boron within 1 h upon changing to Na2B12H11SH-free medium, indicating a largely low affinity binding.

This publication has 0 references indexed in Scilit: