Dynamics of a biological fixed film for phenol degradation in a fluidized‐bed bioreactor

Abstract
Experimental and modeling studies were conducted to analyze the dynamic response behavior of a phenol-oxidizing fixed film using a differential, fluidized-bed bioreactor in a recycle loop with a well-mixed reservoir. With the bioreactor at steady state, a pulse of phenol was added to perturb the system, and the phenol concentration was monitored continuously until steady state was again achieved. The experimental dynamics were compared with a dynamic mathematical model based on diffusion and reaction within the biofilm, liquid mixing, and biofilm growth. Constant-pH experiments could be adequately described using an unstructured, double-Monod kinetic expression with substrate inhibition by phenol. However, in dynamic experiments without pH control, the pH of the liquid phase dropped, and damped oscillations were observed in the phenol concentration and reaction rate trajectories. Oscillatory solutions could not be induced in the model, even when product inhibition was included, and a linear stability analysis did not reveal tendencies toward instability. The cause of the experimental oscillations remains unknown.