Acceleration of small, light projectiles (including hydrogen isotopes) to high speeds using a two-stage light gas gun

Abstract
Small, light projectiles have been accelerated to high speeds using a two-stage light gas gun at Oak Ridge National Laboratory. With 35-mg plastic projectiles (4 mm in diameter), speeds of up to 4.5 km/s have been recorded. The ‘‘pipe gun’’ technique for freezing hydrogen isotopes in situ in the gun barrel has been used to accelerate deuterium pellets (nominal diameter of 4 mm) to velocities of up to 2.85 km/s. The primary application of this technology is for plasma fueling of fusion devices via pellet injection of hydrogen isotopes. Conventional pellet injectors are limited to pellet speeds in the range 1–2 km/s. Higher velocities are desirable for plasma fueling applications, and the two-stage pneumatic technique offers performance in a higher velocity regime. However, experimental results indicate that the use of sabots to encase the cryogenic pellets and protect them from the high peak pressures will be required to reliably attain intact pellets at speeds of ≊3 km/s or greater. In some limited tests, lithium hydride pellets were accelerated to speeds up to 4.2 km/s. Also, repetitive operation of the two-stage gun (four plastic pellets fired at ≊0.5 Hz) was demonstrated for the first time in preliminary tests. The equipment and operation are described, and experimental results and some comparisons with a theoretical model are presented.

This publication has 0 references indexed in Scilit: