Optimal elimination for sparse symmetric systems as a graph problem.

Abstract
The optimal (requiring the minimum number of multiplications) ordering of a sparse symmetric system of linear algebraic equations to be used with Gaussian elimination is first developed as a graph problem which is then treated using the functional equation techniques of dynamic programming. A simple algorithm is proposed as an alternative to the more lengthy procedures of dynamic programming and this algorithm is shown to be effective for systems whose graphs are “grids".

This publication has 7 references indexed in Scilit: