Hepatitis C Virus Induces E6AP-Dependent Degradation of the Retinoblastoma Protein
Open Access
- 28 September 2007
- journal article
- cell biology
- Published by Public Library of Science (PLoS) in PLoS Pathogens
- Vol. 3 (9) , e139-47
- https://doi.org/10.1371/journal.ppat.0030139
Abstract
Hepatitis C virus (HCV) is a positive-strand RNA virus that frequently causes persistent infections and is uniquely associated with the development of hepatocellular carcinoma. While the mechanism(s) by which the virus promotes cancer are poorly defined, previous studies indicate that the HCV RNA-dependent RNA polymerase, nonstructural protein 5B (NS5B), forms a complex with the retinoblastoma tumor suppressor protein (pRb), targeting it for degradation, activating E2F-responsive promoters, and stimulating cellular proliferation. Here, we describe the mechanism underlying pRb regulation by HCV and its relevance to HCV infection. We show that the abundance of pRb is strongly downregulated, and its normal nuclear localization altered to include a major cytoplasmic component, following infection of cultured hepatoma cells with either genotype 1a or 2a HCV. We further demonstrate that this is due to NS5B-dependent ubiquitination of pRb and its subsequent degradation via the proteasome. The NS5B-dependent ubiquitination of pRb requires the ubiquitin ligase activity of E6-associated protein (E6AP), as pRb abundance was restored by siRNA knockdown of E6AP or overexpression of a dominant-negative E6AP mutant in cells containing HCV RNA replicons. E6AP also forms a complex with pRb in an NS5B-dependent manner. These findings suggest a novel mechanism for the regulation of pRb in which the HCV NS5B protein traps pRb in the cytoplasm, and subsequently recruits E6AP to this complex in a process that leads to the ubiquitination of pRb. The disruption of pRb/E2F regulatory pathways in cells infected with HCV is likely to promote hepatocellular proliferation and chromosomal instability, factors important for the development of liver cancer. Persons infected with hepatitis C virus (HCV) are at increased risk for liver cancer. This is remarkable because HCV is an RNA virus with replication confined to the cytoplasm and no potential for integration of its genome into host cell DNA. While it is likely that chronic inflammation contributes to liver cancer, prior studies with HCV transgenic mice indicate that the viral proteins are intrinsically carcinogenic. In this study, we have examined the interaction of one of these, the RNA-dependent RNA polymerase nonstructural protein 5B, with an important cellular tumor suppressor protein, the retinoblastoma protein (pRb). pRb is a master regulator of the cell cycle, and altered expression of some of the many genes it regulates may lead to cancer. We show that the abundance of pRb is strongly downregulated in cells infected with HCV, and that nonstructural protein 5B targets pRb for destruction via the cell's normal protein degradation machinery. The E6-associated protein appears to play a role in this process, which is interesting as it also mediates the degradation of another tumor suppressor, p53, by papillomaviruses. The loss of pRb function in HCV-infected cells likely promotes hepatocellular proliferation as well chromosomal instability, factors important for the development of liver cancer.Keywords
This publication has 64 references indexed in Scilit:
- Hepatocellular carcinoma pathogenesis: from genes to environmentNature Reviews Cancer, 2006
- Viral hepatitis and liver cancer: the case of hepatitis COncogene, 2006
- Therapy of Hepatitis C: From Empiricism to EradicationHepatology, 2006
- Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymeraseProceedings of the National Academy of Sciences, 2005
- HCV core, NS3, NS5A and NS5B proteins modulate cell proliferation independently from p53 expression in hepatocarcinoma cell linesArchiv für die gesamte Virusforschung, 2003
- p53-dependent transcriptional repression of p21waf1 by hepatitis C virus NS3Journal of General Virology, 2001
- Modulation of Cell Growth by the Hepatitis C Virus Nonstructural Protein NS5AJournal of Biological Chemistry, 2001
- Hepatitis C Virus NS5A Physically Associates with p53 and Regulates p21/waf1 Gene Expression in a p53-Dependent MannerJournal of Virology, 2001
- Hepatitis C virus core protein induces apoptosis and impairs cell-cycle regulation in stably transformed chinese hamster ovary cellsHepatology, 2000
- The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic miceNature Medicine, 1998