Palomar 13: An Unusual Stellar System in the Galactic Halo

Abstract
We have measured Keck/HIRES radial velocities for 30 candidate red giants in the direction of Palomar 13: an object traditionally cataloged as a compact, low-luminosity globular cluster. From a sample of 21 confirmed members, we find a systemic velocity of 24.1 km/s and a projected, intrinsic velocity dispersion of 2.2 km/s. Although small, this dispersion is several times larger than that expected for a globular cluster of this luminosity and central concentration. Taken at face value, this dispersion implies a mass-to-light ratio of ~ 40 (in solar units) based on the best-fit King-Michie model. The surface density profile of Palomar 13 also appears to be anomalous among Galactic globular clusters -- depending upon the details of background subtraction and model-fitting, Palomar 13 either contains a substantial population of "extra-tidal" stars, or it is far more spatially extended than previously suspected. The full surface density profile is equally well-fit by a King-Michie model having a high concentration and large tidal radius, or by a NFW model. We examine -- and tentatively reject -- a number of possible explanations for the observed characteristics of Palomar 13 (e.g., velocity "jitter" among the red giants, spectroscopic binary stars, non-standard mass functions, modified Newtonian dynamics), and conclude that the two most plausible scenarios are either catastrophic heating during a recent perigalacticon passage, or the presence of a massive dark halo. Thus, the available evidence suggests that Palomar 13 is either a globular cluster which is now in the process of dissolving into the Galactic halo, or a faint, dark-matter-dominated stellar system (ABRIDGED).Comment: 31 pages, 13 postscript figures and 1 color gif image. Also available at http://www.physics.rutgers.edu/ast/ast-rap.html. Accepted for publication in the Astrophysical Journa
All Related Versions