Changes in membrane permeability and mineral, phytohormone and polypeptide composition in rice suspension cells during growth and under the influence of the growth retardant tetcyclacis

Abstract
The plant growth retardant tetcyclacis inhibits cell division growth in rice suspension cultures at concentrations above 10−6 M. Tracer experiments with rice cells revealed that tetcyclacis reduced the incorporation of mevalonic acid into terpenoids after 30 min, the uptake of leucine, uridine and thymidine after 2 h and their incorporation into the corresponding macromolecules after 3–7 h. The changes in membrane permeability concluded to have been caused by an influence on phytosterol biosynthesis are probably also the explanation for alterations of tetcyclacis-treated cells in the content of macro- and microelements. As shown by immunoassay, tetcyclacis did not modify the levels of endogenous gibberellins (Grossmann et al. 1985), cytokinins and indole acetic acid during a growth cycle of 15 d. However, a clear rise in the abscisic acid (ABA) level occurred during the first 5 d of treatment. In untreated cells such a rise coincided only with the aging of the cell culture in the stationary growth phase. Investigations of the cell polypeptide pattern using sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed that the ABA increase following tetcyclacis treatment seems not to be a consequence of advanced cell aging.