A Reformulation and Implementation of the Bryan-Cox-Semtner Ocean Model on the Connection Machine

Abstract
Certain aspects of the Semtner-Chervin version of the Bryan-Cox-Semtner global ocean model are reformulated for improved efficiency on parallel computer architectures and on the Connection Machine CM-2 in particular. These changes involve (a) the switch from a streamfunction to a surface pressure formulation in the barotropic equations, (b) the splitting off of the Coriolis terms from the barotropic equations to produce a symmetric surface pressure equation, which then permits (c) the use of a preconditioned conjugate-gradient method for the solution of this equation. The switch to a surface pressure formulation (a) eliminates global equations associated with island boundary conditions and therefore improves performance as well as allows an unlimited number of islands, (b) reduces sensitivity to rapidly varying bottom topography and therefore obviates the need for smoothing the topography, and (c) makes the surface pressure a prognostic variable, thus potentially making it easier to assimilate su... Abstract Certain aspects of the Semtner-Chervin version of the Bryan-Cox-Semtner global ocean model are reformulated for improved efficiency on parallel computer architectures and on the Connection Machine CM-2 in particular. These changes involve (a) the switch from a streamfunction to a surface pressure formulation in the barotropic equations, (b) the splitting off of the Coriolis terms from the barotropic equations to produce a symmetric surface pressure equation, which then permits (c) the use of a preconditioned conjugate-gradient method for the solution of this equation. The switch to a surface pressure formulation (a) eliminates global equations associated with island boundary conditions and therefore improves performance as well as allows an unlimited number of islands, (b) reduces sensitivity to rapidly varying bottom topography and therefore obviates the need for smoothing the topography, and (c) makes the surface pressure a prognostic variable, thus potentially making it easier to assimilate su...