Two-Stage Robust Network Flow and Design Under Demand Uncertainty
Top Cited Papers
- 1 August 2007
- journal article
- Published by Institute for Operations Research and the Management Sciences (INFORMS) in Operations Research
- Vol. 55 (4) , 662-673
- https://doi.org/10.1287/opre.1070.0428
Abstract
We describe a two-stage robust optimization approach for solving network flow and design problems with uncertain demand. In two-stage network optimization, one defers a subset of the flow decisions until after the realization of the uncertain demand. Availability of such a recourse action allows one to come up with less conservative solutions compared to single-stage optimization. However, this advantage often comes at a price: two-stage optimization is, in general, significantly harder than single-stage optimization. For network flow and design under demand uncertainty, we give a characterization of the first-stage robust decisions with an exponential number of constraints and prove that the corresponding separation problem is 𝒩𝒫-hard even for a network flow problem on a bipartite graph. We show, however, that if the second-stage network topology is totally ordered or an arborescence, then the separation problem is tractable. Unlike single-stage robust optimization under demand uncertainty, two-stage robust optimization allows one to control conservatism of the solutions by means of an allowed “budget for demand uncertainty.” Using a budget of uncertainty, we provide an upper bound on the probability of infeasibility of a robust solution for a random demand vector. We generalize the approach to multicommodity network flow and design, and give applications to lot-sizing and location-transportation problems. By projecting out second-stage flow variables, we define an upper bounding problem for the two-stage min-max-min optimization problem. Finally, we present computational results comparing the proposed two-stage robust optimization approach with single-stage robust optimization as well as scenario-based two-stage stochastic optimization.Keywords
This publication has 23 references indexed in Scilit:
- Strong Formulations of Robust Mixed 0–1 ProgrammingMathematical Programming, 2006
- A Robust Optimization Approach to Inventory TheoryOperations Research, 2006
- Tractable Approximations to Robust Conic Optimization ProblemsMathematical Programming, 2005
- Adjustable robust solutions of uncertain linear programsMathematical Programming, 2004
- The Price of RobustnessOperations Research, 2004
- Robust discrete optimization and network flowsMathematical Programming, 2003
- On the complexity of a class of combinatorial optimization problems with uncertaintyMathematical Programming, 2001
- Robust solutions of Linear Programming problems contaminated with uncertain dataMathematical Programming, 2000
- Robust Convex OptimizationMathematics of Operations Research, 1998
- A New Generation of Vehicle Routing Research: Robust Algorithms, Addressing UncertaintyOperations Research, 1996