Some results and examples about the behavior of harmonic functions and Green’s functions with respect to second order elliptic operators
- 1 March 2002
- journal article
- research article
- Published by Cambridge University Press (CUP) in Nagoya Mathematical Journal
- Vol. 165, 123-158
- https://doi.org/10.1017/s0027763000008187
Abstract
Let M be a manifold and let L be a sufficiently smooth second order elliptic operator in M such that (M, L) is a transient pair. It is first shown that if L is symmetric with respect to some density in M, there exists a positive L-harmonic function in M which dominates L-Green’s function at infinity. Other classes of elliptic operators are investigated and examples are constructed showing that this property may fail if the symmetry assumption is removed. Another part of the paper deals with the existence of critical points for certain L-harmonic functions with periodicity properties. A class of small perturbations of second order elliptic operators is also described.Keywords
This publication has 15 references indexed in Scilit:
- Criticality and ground states for second-order elliptic equationsJournal of Differential Equations, 1989
- Negatively Curved Manifolds, Elliptic Operators, and the Martin BoundaryAnnals of Mathematics, 1987
- Structure of positive solutions to (−Δ+V)u=0 in RnDuke Mathematical Journal, 1986
- Une propriété de la compactification de Martin d'un domaine euclidienAnnales de l'institut Fourier, 1979
- A note on the transfinite diameterKodai Mathematical Journal, 1976
- Les fonctions surharmoniques associées à un opérateur elliptique du second ordre à coefficients discontinusAnnales de l'institut Fourier, 1969
- Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentielAnnales de l'institut Fourier, 1962
- Sur le rôle de la frontière de R. S. Martin dans la théorie du potentielAnnales de l'institut Fourier, 1957
- Discrete potential theoryDuke Mathematical Journal, 1953
- Potentials and positively infinite singularities of harmonic functionsMonatshefte für Mathematik, 1936