Perturbation theory of low-dimensional quantum liquids. I. The pseudoparticle-operator basis

Abstract
We introduce an operator algebra for the description of the low-energy physics of one-dimensional, integrable, multicomponent quantum liquids. Considering the particular case of the Hubbard chain in a magnetic field and chemical potential, we show that at low energy its Bethe-ansatz solution can be interpreted in terms of a pseudoparticle-operator algebra. Our algebraic approach provides a concise interpretation of, and justification for, several recent studies of low-energy excitations and trasnport which have been based on detailed analyses of specific Bethe-ansatz eigenfunctions and eigenenergies. A central point is that the exact ground state of the interacting many-electron problem is the noninteracting pseudoparticle ground state. Furthermore, in the pseudoparticle basis, the quantum problem becomes perturbative, i.e., the two-pseudoparticle forward-scattering vertices and amplitudes do not diverge, and one can define a many-pseudoparticle perturbation theory. We write the general quantum-liquid Hamiltonian in the pseudoparticle basis and show that the pseudoparticle-perturbation theory leads, in a natural way, to the generalized Landau-liquid approach.
All Related Versions