Novel Mechanism of Photoinduced Reversible Phase Transitions in Molecule-Based Magnets

Abstract
A novel microscopic mechanism of bidirectional structural changes is proposed for the photoinduced magnetic phase transition in Co-Fe Prussian blue analogs on the basis of ab initio quantum chemical cluster calculations. It is shown that the local potential energies of various spin states of Co are sensitive to the number of nearest neighbor Fe vacancies. As a result, the forward and backward structural changes are most readily initiated by excitation of different local regions by different photons. This mechanism suggests an effective strategy to realize photoinduced reversible phase transitions in a general system consisting of two local components.