• 29 September 2000
Abstract
We predict luminosity functions and number counts for extragalactic infrared sources at various wavelengths using our empirically based model. This is the same model which we used successfully to predict the spectral energy distribution of the diffuse infrared background. Comparisons of galaxy count results with existing data indicate that either galaxy luminosity evolution is not stronger that Q=3.1 (where L is proportional to (1+z)^{Q}) or that this evolution does not continue beyond a redshift of 2. However, measurements of the far infrared background from COBE-DIRBE seem to suggest a stronger evolution for far infrared emission with Q > 4 in the redshift range beteen 0 and 1. We discuss several interpretations of these results and also discuss how future observations can reconcile this apparent conflict. We also make predictions of the redshift distributions of extragalactic infrared sources at selected flux levels which can be tested by planned detectors. Finally, we predict the fluxes at which various future surveys will become confusion limited.

This publication has 0 references indexed in Scilit: