Prolonged contraction-relaxation cycle of fast-twitch muscles in parvalbumin knockout mice

Abstract
The calcium-binding protein parvalbumin (PV) occurs at high concentrations in fast-contracting vertebrate muscle fibers. Its putative role in facilitating the rapid relaxation of mammalian fast-twitch muscle fibers by acting as a temporary buffer for Ca2+ is still controversial. We generated knockout mice for PV (PV −/−) and compared the Ca2+ transients and the dynamics of contraction of their muscles with those from heterozygous (PV +/−) and wild-type (WT) mice. In the muscles of PV-deficient mice, the decay of intracellular Ca2+ concentration ([Ca2+]i) after 20-ms stimulation was slower compared with WT mice and led to a prolongation of the time required to attain peak twitch tension and to an extension of the half-relaxation time. The integral [Ca2+]iin muscle fibers of PV −/− mice was higher and consequently the force generated during a single twitch was ∼40% greater than in PV +/− and WT animals. Acceleration of the contraction-relaxation cycle of fast-twitch muscle fibers by PV may confer an advantage in the performance of rapid, phasic movements.