Conversion of cereal residues into biogas in a rumen-derived process

Abstract
A recently developed high-rate, two-phase process, which employs rumen microorganisms for efficient acidogenesis, was tested for anaerobic degradation of barley straw, rye straw, and maize stover. Under conditions similar to those of the rumen and loading rates varying between 9.8 and 26.0 g of organic matter/I/day in the first phase (acidogenic reactor), total fibre degradation efficiencies ranged between 42% and 57%, irrespective of the loading rate applied. Average specific production of volatile fatty acids and biogas/g volatile solid digested in the acidogenic reactor varied between 6.9 and 11.2 mmol and 0.10 and 0.25 l, respectively.The effect of varying solid retention times on the extent of degradation of barley straw was examined. Changing of retention times in the range of 60 to 156 h had no effect on degradation efficiency, but a decrease in efficiency was observed at retention times below 60 h.By connecting the acidogenic reactor in series to an Upflow Anaerobic Sludge Blanket (UASB) methanogenic reactor the volatile fatty acids were converted into biogas. Average methane contents of the gases produced in the acidogenic reactor and in the UASB reactor were 30±3% and 78±3%, respectively.