Circuit optimization via adjoint Lagrangians

Abstract
The circuit tuning problem is best approached by means of gradient-based nonlinear optimization algorithms. For large circuits, gradient computation can be the bottleneck in the optimization procedure. Traditionally, when the number of measurements is large relative to the number of tunable parameters, the direct method is used to repeatedly solve the associated sensitivity circuit to obtain all the necessary gradients. Likewise, when the parameters outnumber the measurements, the adjoint method is employed to solve the adjoint circuit repeatedly for each measurement to compute the sensitivities. In this paper we propose the adjoint Lagrangian method, which computes all the gradients necessary for augmented-Lagrangian-based optimization in a single adjoint analysis. After the nominal simulation of the circuit has been carried out, the gradients of the merit function are expressed as the gradients of a weighted sum of circuit measurements. The weights are dependent on the nominal solution and on optimizer quantities such as Lagrange multipliers. By suitably choosing the excitations of the adjoint circuit, the gradients of the merit function are computed via a single adjoint analysis, irrespective of the number of measurements and the number of parameters of the optimization. This procedure requires close integration between the nonlinear optimization software and the circuit simulation program.

This publication has 21 references indexed in Scilit: