Abstract
The hysteresis behaviour of the nematic-cholesteric phase transition in liquid crystals is closely connected with the alignment of the liquid crystal molecules on the surfaces of treated solid substrates. We have investigated the hysteresis as a function of rubbing strength, using rubbing technology that controls the orientation of the liquid crystal molecules. The surface alignment direction contributes to the hysteresis width, is not dependent on rubbing strength, and is only slightly related to pretilt angles. A no-rubbing treatment, that is, random alignment, is important in-order to create a large hysteresis width on homogeneously aligned polyimide films.